A Kinematical Transition from an Infalling Envelope to a Core around the Protostar L1489 IRS

Jinshi Sai

Motivation：

Protoplanetary disks are important objects for planet formation．However，their formation process is still unclear．Disks form around protostars as mass and angular momentum are transferred from cores．Hence，revealing the gas kinematics around protostars over wide－spatial scales from a disk（ $\sim 100 \mathrm{au}$ ）to a core（ $\sim 10,000 \mathrm{au}$ ）is essential to understand the physical process of disk formation．Some works have investigated the kinematics on 100－1，000 au scales and revealed that infalling envelopes are connected to rotationally supported disks smoothly．However，the kinematics on 1，000－10，000 au scales and the transition from an infalling envelope to a core are still unclear．

What we do：

We have observed the Class I protostar L1489 IRS with Atacama Compact Array（ACA or Morita array）and IRAM 30－meter telescope in C ${ }^{18}$ O 2－1 to investigate the gas kinematics on $1,000-10,000$ au scales．We have measured a radial profile of rotational velocity，and constrained infalling velocity from a comparison between kinematic models and observations．

Our findings：

－The radial profile of the measured rotational velocity shows a break at a radius of $\sim 2,800$ au：the power－law index of the profile changes from ~-1 to ~ 0.2 ，suggesting a kinematical transition from an infalling envelope to a core．
－An envelope model with infalling velocity slower than the free－fall velocity by a factor of 0.4 explains observations better than a free－fall model．Magnetic field could be an origin of such a slow infalling velocity．

Co－authors：N．Ohashi ${ }^{1}$ ，A．Maury ${ }^{2}$ ，S．Maret ${ }^{3}$ ，H．－W．Yen ${ }^{1}$ ，Y．Aso ${ }^{4}$ ，and M．Gaudel ${ }^{2}$
${ }^{1}$ Academia Sinica Institute of Astronomy and Astrophysics，${ }^{2}$ CEA，Université Paris－Saclay， ${ }^{3}$ Université Grenoble Alpes，CNRS，IPAG，${ }^{4}$ Korea Astronomy and Space Science Institute

Reference：［1］Ohashi et al．1997，ApJ，488，317－329；［2］Belloche 2013，EAS Pub． Ser．，62，25；［3］Gaudel et al．2020，A\＆A，637，A92；［4］Lee 2010，ApJ，725，712－ 720；［5］Sai et al．2020，ApJ，893，51；［6］Ulrich 1976，ApJ，210，377－391；［7］Aso et al．2015，ApJ，812，27；［8］Shu 1977，ApJ，217，488－497；［9］Yen et al．2011，ApJ， 742，57；［10］Goodman et al．1993，ApJ，406，528－547

Gas Kinematics around Protostars

Background \&
Observations
It is suggested from line observations that protostars are surrounded by three different kinematic structures: a disk rotating at Keplerian velocity on ~ 100 au scale, an infalling envelope, where material infalls conserving angular momentum, on $\sim 1,000$ au scale, and a core rotating like a rigid-body or being turbulent on $\sim 10,000$ au scale $[1,2,3]$. Confirming this picture in individual sources is required to understand how material is brought from cores to disks. Recent works probing the kinematics on a 100-1,000 au scales have revealed the transition from a disk to an envelope in tens of protostellar systems [e.g., 4]. However, the kinematics on 1,000-10,000 au scales and the transition from an envelope to a core are still unclear.

Protostar L1489 IRS

L1489 IRS is a Class I protostar in the Taurus molecular cloud ($d \sim 140 \mathrm{pc}$). From our previous observations with ALMA, Keplerian rotation of a disk ($v_{\text {rot }} \propto r^{-0.5}$) and rotation of an envelope conserving angular momentum $\left(v_{\text {rot }} \propto r^{-1}\right)$ are identified at radii less than 1,000 au [5]. However, rotational and infalling velocity at radii of 1,000-10,000 au are still unknown.

Objective of this work:

- To measure rotational and infalling velocity at radii of 1,000-10,000 au
- To reveal a kinematical transition from an infalling envelope to a core

Mapping Observations

We have mapped 2'x2' region around L1489 IRS with ACA and IRAM 30 -meter telescope in $\mathrm{C}^{18} \mathrm{O} 2-1$. Both data are combined using CASA with a task feather and the combined data are analyzed.

Summary of the combined data

- Beam size: $7.7^{\prime \prime} \times 6.4^{\prime \prime}\left(-85^{\circ}\right)$ ($\sim 1,000$ au resolution)
- $\Delta v: 0.17 \mathrm{~km} / \mathrm{s}$
- Rms: $0.11 \mathrm{Jy} / \mathrm{beam}$

Radial distribution of specific angular momentum

Observational Results \& Mesurement of Rotational Velocity

The $\mathrm{C}^{18} \mathrm{O}$ 2-1 emission shows a velocity gradient likely due to rotation. Hence, we have measured the rotational velocity.

Contour: integrated intensity Color: intensity weighted mean velocity Red \& blue arrows: direction of the outflow

The $\mathrm{C}^{18} \mathrm{O} 2-1$ emission shows the following features:

- Intensity peak at the protostellar position
- Velocity gradient in the same direction as that of the disk rotation
- Second peak at the northeast side

Position-velocity (PV) diagram cut along the velocity gradient

Rotational velocity is measured on the southwest side, where there is less contamination of the second component on the northeast side.

Radial profile of the measured velocity

Radial profile of the measured rotational velocity shows a break at r~2,800 au.

Fitting a double power-law function

$$
V_{\text {rot }}= \begin{cases}V_{\text {break }}\left(\frac{r}{R_{\text {break }}}\right)^{p_{\text {in }}} & \left(r \leq R_{\text {break }}\right) \\ V_{\text {break }}\left(\frac{r}{R_{\text {braak }}}\right)^{p_{\text {out }}} & \left(r>R_{\text {break }}\right)\end{cases}
$$

Fitting results:

- Power-law index is ~-1 at $r<2,800$ au, which can be interpreted as rotation of an envelope conserving angular momentum ($v \propto j / r$).
- Velocity increases with radius at $r>2,800$ au.

Infalling Velocity

We have constructed a disk and spherical envelope model adopting density and velocity field used in our previous work for a disk and those suggested by Ulrich (1976) for an envelope [5, 6]. To explore the best infalling velocity, we introduced a parameter α as follows:

$$
v_{r}(r, \theta)=-\alpha\left(\frac{G M_{*}}{r}\right)^{0.5}\left(1+\frac{\cos \theta}{\cos \theta_{0}}\right)^{0.5}
$$

, where $0<\alpha<1$ and $\alpha=1$ means free-fall.
We found that an envelope model with $\alpha=0.4$ reproduces observations better than a model with $\alpha=1$. Magnetic field is one possible cause of the slow infalling velocity. The strength of the required magnetic field is estimated to be $\sim 0.01-0.1 \mathrm{mG}$ from equation of motion and $\alpha=0.4$ [7].

Radial Distribution of Specific Angular Momentum

Radial profile of specific angular momentum is calculated from the measured rotational profile and compared to a simple model calculation.

Model calculation of angular momentum transfer based on the Inside-out collapse [8, 9]

- We assume angular specific momentum distribution in an initial core follows $j \propto r^{1.6}$ as suggested from observations of dense cores [10].
- Expansion wave propagates at sound speed ($0.2 \mathrm{~km} / \mathrm{s}$) from inside to outside.
- Material inside the front of the expansion wave infalls.

Inside-out collapse
 Not infalling yet

Expansion wave propagating at c_{s}

Our calculation suggests the following:

- Larger initial angular momentum is prefered to explain the radial profile of the measured specific angular momentum.
- Expected j-profile at the age of $1.5 \times 10^{5} \mathrm{yr}$, which is comparable to the lifetime of Class I protostars, matches the measured profile in L1489 IRS.

Radial profile of specific angular momentum j

